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These lecture notes are intended for an introduction to pre-Born–Oppenheimer

(pre-BO) theory. Alternatively, they can also be considered as a short course on

variational techniques for the example of computing molecules without the BO

approximation.

Recommended literature:

• Y. Suzuki and K. Varga, Stochastic Variational Approach to Quantum-

Mechanical Few-Body Problems, Springer-Verlag (Berlin, 1998)
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I. THE MANY-PARTICLE SCHRÖDINGER EQUATION

ĤΨ = EΨ (1)

with

Ĥ(m, q; r) = −
np+1∑

i=1

1

2mi

∆ri +

np+1∑

i=1

np+1∑

j>i

qiqj
|ri − rj|

(2)

where the mass and electric charge, mi and qi (i = 1, 2, . . . , np + 1), are constant

parameters. In addition, physically meaningful solutions satisfy the spin-statistics

theorem for fermions and bosons (“Pauli principle”), so we have to consider the spin

(fermionic or bosonic character), si (i = 1, 2, . . . , np + 1), for each particle as an

additional parameter.

There are in total 3(np +1) physical parameters, {mi, qi, si (i = 1, 2, . . . , np +1)},
which specify an isolated molecule.

The Hamiltonian is invariant to space rotations and inversion, furthermore it is

independent of the particles’ spin. Thereby, the total angular momentum, N̂2, its

projection, N̂z, space inversion, î, and the total spin angular momentum and its

projection for each particle type, e.g., a, Ŝ2
a and Ŝa,z are conserved quantities, i.e.,

[
Ĥ, N̂2

]
= 0

[
Ĥ, N̂z

]
= 0 (3)

[
Ĥ, î

]
= 0 (4)

[
Ĥ, Ŝ2

a

]
= 0

[
Ĥ, Ŝa,z

]
= 0. (5)
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where the total angular momentum vector is the vector sum of the angular momen-

tum of the particles

N̂ =

np+1∑

i=1

ri × pi. (6)
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II. VARIATIONAL PRINCIPLES

Ritz theorem: For an arbitrary ϕ function in the state space the Rayleigh quotient

is an upper bound to the ground-state energy.

The Hamiltonian, Ĥ, is Hermitian operator, bounded from below and time indepen-

dent.

ĤΨi = EiΨi (7)

where the eigenvalues are ordered as: E1 < E2 ≤ E3 ≤ . . .. For some (normalizable)

ϕ the Rayleigh quotient is

ε =
〈ϕ|Ĥ|ϕ〉
〈ϕ|ϕ〉 . (8)

The theorem states that

ε ≥ E1. (9)

Proof: Let us expand ϕ in terms of the Ψi eigenstates of Ĥ:

ϕ =
∑

i=1

ciΨi. (10)

Then,

ε− E1 =
〈ϕ|Ĥ|ϕ〉
〈ϕ|ϕ〉 − E1

=

∑
i=1

∑
j=1

c∗i cj〈Ψi|Ĥ|Ψj〉
∑
i=1

∑
j=1

c∗i cj〈Ψi|Ψj〉
− E1

=

∑
i=1

∑
j=1

c∗i cjEjδij

c∗i cjδij
− E1

=

∑
i=1

|ci|2(Ej − E1)

∑
i=1

|ci|2
≥ 0. (11)
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Generalized Ritz theorem: The expectation value of Ĥ is stationary in the neigh-

borhood of its discrete eigenvalues.

δE = 0 upon any δΨ for ĤΨ = EΨ (12)

Proof: The energy functional is

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . (13)

The variation of the energy functional upon a small, δΨ variation of the wave function

is:

δE =
〈δΨ|Ĥ|Ψ〉〈Ψ|Ψ〉 − 〈δΨ|Ψ〉〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉2 + cc.

=
E〈δΨ|Ψ〉〈Ψ|Ψ〉 − 〈δΨ|Ψ〉E〈Ψ|Ψ〉

〈Ψ|Ψ〉2 + cc.

= 0. (14)

Linear variational method: Due to the generalized Ritz principle, the computa-

tion of eigenvalues and eigenvectors in a finite basis set is translated to a matrix-

eigenvalue problem. Let us consider a VK subspace spanned by the ψ1, ψ2, . . . , ψK

functions. Then, we approximate the exact wave function on this subspace as a linear

combination

ΨV =
K∑

i=1

ciψi. (15)
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Substituting this form into the generalized variational principle:

0 = 〈δΨ|(Ĥ − E)Ψ〉

= 〈δ
K∑

i=1

ciψi|(Ĥ − E)
K∑

j=1

cjψj〉

=
K∑

i=1

K∑

j=1

δc∗i cj〈φi|(Ĥ − EÎ)|φj〉

=
K∑

i=1

δc∗i

K∑

j=1

(Hij − ESij)cj. (16)

So, for any small δci variation we require:

K∑

j=1

(Hij − ESij)cj = 0, for all i = 1, . . . , K, (17)

which is equivalent to the matrix eigenvalue problem

Hc = ESc. (18)

The matrix elements of the Hamiltonian are

Hij = 〈ψi|Ĥ|ψj〉 (19)

and the overlap matrix elements are

Sij = 〈ψi|ψj〉, (20)

which is the K ×K unit matrix if ψ1, ψ2, . . . , ψK are orthonormal functions.

Theorem about enlargement of the basis set and the variational property of excited

states:“Upon enlargement of the basis set, the eigenvalues never get worse.” (⇒
Figure)

Let ε1 ≤ ε2 ≤ . . . ≤ εK be the eigenvalues of Ĥ on a subspace VK spanned by

the ψ1, ψ2, . . . , ψK independent functions.
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Let ε′1 ≤ ε′2 ≤ . . . ≤ ε′K + 1 be the eigenvalues of Ĥ on a subspace VK+1 spanned

by the independent functions ψ1, ψ2, . . . , ψK , ψK+1.

Then:

ε′1 ≤ ε1 ≤ ε′2 ≤ ε2 ≤ . . . ε′K ≤ εK ≤ εK+1. (21)

Proof: Let φ1, φ2, . . . , φK be the orthonormal eigenstates corresponding to the eigen-

values ε1, ε2, . . . , εK . Then, any function Ψ in VK+1 can be expressed as

Ψ =
K+1∑

i=1

ciφi (22)

where the (K + 1)th orthonormal function is obtained as follows.

|φK+1〉 =
1√
N

[
|ψK+1〉 −

K∑

i=1

|φi〉
〈φi|ψK+1〉
〈φi|φi〉

]

=
1√
N

[
|ψK+1〉 −

K∑

i=1

|φi〉〈φi|ψK+1〉
]
, (23)

where the N normalization constant is

N =

〈
ψK+1 −

K∑

i=1

〈φi|ψK+1〉φi
∣∣∣ψK+1 −

K∑

j=1

〈φj|ψK+1〉φj
〉

= 〈ψK+1|ψK+1〉 − 2
K∑

i=1

〈φi|ψK+1〉∗〈φi|ψK+1〉+
K∑

i=1

K∑

j=1

〈φi|ψK+1〉∗〈φj|ψK+1〉〈φi|φj〉

= 〈ψK+1|ψK+1〉 −
K∑

i=1

|〈φi|ψK+1〉|2. (24)

The eigenvalue problem using the basis set φ1, φ2, . . . , φK , φK+1 is:




ε1 0 . . . 0 h1

0 ε2 . . . 0 h2
...

...
. . .

...
...

0 0 . . . εK hK

h∗1 h∗2 . . . h∗K hK+1







c1

c2
...

cK

cK+1




= E




c1

c2
...

cK

cK+1




(25)
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where

hj = 〈φj|ĤφK+1〉. (26)

In order to solve this eigenvalue problem, we rearrange the equation to




ε1 − E 0 . . . 0 h1

0 ε2 − E . . . 0 h2
...

...
. . .

...
...

0 0 . . . εK − E hK

h∗1 h∗2 . . . h∗K hK+1 − E







c1

c2
...

cK

cK+1




= 0. (27)

The new eigenvalues are obtained as the roots of the D(E) characteristic function,

the determinant of the matrix in the left hand side of Eq. (27). We expand the

determinant by its last column, and then, the corresponding minor is expanded

(trivially) by its last row: (⇒ Figure)

0 = D(E)

= det




ε1 − E 0 . . . 0 h1

0 ε2 − E . . . 0 h2
...

...
. . .

...
...

0 0 . . . εK − E hK

h∗1 h∗2 . . . h∗K hK+1 − E




= (hK+1 − E)
K∏

j=1

(εj − E) +
K∑

i=1

hi(−1)i+K+1 det(Ai,K+1)

= (hK+1 − E)
K∏

j=1

(εj − E) +
K∑

i=1

hi(−1)i+K+1


h

∗
i (−1)i+K

K∏
j=1

(εj − E)

εi − E




=
K∏

j=1

(εj − E)

[
hK+1 − E −

K∑

i=1

|hi|2
εi − E

]
(28)
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The new (K + 1) eigenvalues are obtained by finding the roots of the equation

0 =
K∏

j=1

(εj − E)

[
hK+1 − E −

K∑

i=1

|hi|2
εi − E

]
. (29)

Note that we assumed that all hi 6= 0. Thereby, for E = εj the last term in the

second parentheses tends to infinity. Since E 6= εj, a rearranged form of Eq. (29)

results in the practical working equation (⇒ Figure)

E − hK+1 =
K∑

i=1

|hi|2
E − εi

. (30)

The theorem implies the variational property for not only the lowest but also for

excited states. Furthermore, it offers a practical and efficient technique to compute

the new eigenvalues upon the enlargement (or update) of the basis set if the “old”

eigenvalues and eigenvectors are known.

A variational recipe In order to define a variational approach, it is necessary to

specify the following details:

• coordinates

• Hamiltonian in the selected coordinates

• basis functions

• (analytic) matrix elements

• eigensolver

• optional: parameterization of the basis functions
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III. COORDINATES

The full many-particle Hamiltonian has a continuous spectrum due to the overall

translation of the system. Since we are interested in the “internal”, translationally

invariant properties, we shall introduce translationally invariant Cartesian coordi-

nates (TICCs).

The laboratory-fixed Cartesian coordinates (LFCCs) of a particle are labelled

with ri ∈ R3 (i = 1, 2, . . . , np + 1). We define new Cartesian coordinates as a linear

combination of ri with the following properties:

1. TI property: invariance upon a uniform translation, d ∈ R3, of the overall

system:

xi({ri + d}) = xi({ri}) ∈ R3, i = 1, 2, . . . , np; (31)

2. Overall translational motion:

X({ri + d}) = x({ri}) + d ∈ R3, (32)

where we used the shorthand notation: {ri} = {ri, i = 1, 2 . . . , np + 1}.
A linear transformation of LFCCs


x
X


 = (U ⊗ I3)r, (33)

which satisfies the (1)–(2) conditions can be formulated in terms of conditions for

the elements of the U ∈ R(np+1)×(np+1) matrix:
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1. TI condition:

For all i = 1, . . . , np:

xi =

np+1∑

j=1

Uijrj (34)

x′i =

np+1∑

j=1

Uij(rj + d)

=

np+1∑

j=1

Uijrj +

np+1∑

j=1

Uijd. (35)

Due to the TI condition xi = x′i, and thus the last term in the last equation

must vanish, which is fulfilled for any d ∈ R3 if

np+1∑

j=1

Uij = 0, i = 1, 2, . . . , np. (36)

2. Translational condition:

X =

np+1∑

j=1

Unp+1,jrj (37)

X ′ =

np+1∑

j=1

Unp+1,j(rj + d)

=

np+1∑

j=1

Unp+1,jrj +

np+1∑

j=1

Unp+1,jd. (38)

Due to the translational condition X ′ = X + d, and thus the last term in the

last equation must equal to d, which is fulfilled if

np+1∑

j=1

Unp+1,j = 1. (39)

Any U matrix which satisfies Eqs. (36) and (39) will define a TICC set and can be

used to describe the internal motion.
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Note that a convenient choice (see also the next section) to satisfy the transla-

tional condition, Eq. (39), is

Unp+1,j =
mj

mtot

(40)

with

mtot =

np+1∑

i=1

mi (41)

and mi being the physical masses of the particles. For the following sections, we

shall adopt this choice, and thusX collects the center-of-mass Cartesian coordinates

(CMCCs):

XCM =

np∑

i=1

mi

mtot

ri. (42)

For a short notation, we introduce x̃:

x̃ =


 x

XCM


 . (43)

Also note that U is constant, hence the new coordinates are rectilinear.

There are various common choices for TICCs, for example (see also Figure 1)

• Jacobi coordinates (orthogonal)

• heavy-particle-centered coordinates

• center-of-mass-centered coordinates

• ...
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◦

•

• ◦ •
• ◦
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• ◦

◦
FIG. 1: Example for translationally invariant coordinate definitions.

A. Transformation of coordinates upon the permutation of identical par-

ticles

The permutation, P̂ of identical particles can be represented by a linear trans-

formation of the LF Cartesian coordinates as

rP = P̂r = (T P ⊗ I3)r. (44)

Since identical particles have the same mass, the CMCCs are unaffected, however

the TICCs may change:

x̃P = (U ⊗ I3)rP
= (U ⊗ I3)(T P ⊗ I3)r

= (UT P ⊗ I3)r (45)

It can be shown that UT P also satisfies the TI and translational conditions, and

thus the permutation of identical particles does not affect translational invariance,

but it may result in another set of TICCs. (⇒ Figure)
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IV. QUANTUM HAMILTONIANS

Ĥ = T̂ ′ + V̂ (|ri − rj|) (46)

The Coulomb potential energy depends on the distance between pairs of particles, so

it is translationally invariant. In this section, we focus on the separation of the overall

translation from the kinetic energy operator (KEO) and express the KEO in terms

of translationally invariant coordinates and center-of-mass Cartesian coordinates,

introduced in the previous section.

The (np + 1)-particle kinetic-energy operator is

T̂ ′ = −
np+1∑

i=1

1

2mi

∆ri = −
np+1∑

i=1

1

2mi

(
∂2

∂r2ix
+

∂2

∂r2iy
+

∂2

∂r2iz

)
, (47)

which will be written in terms of the new coordinates by using the chain rule:

x̃ =


 x

XCM


 = (U ⊗ I3)r, (48)

which is for the elements (α = x, y, z):

x̃jα =

np+1∑

j=1

Ujiriα. (49)

Then, we write down the first derivative in terms of x̃jα as

∂

∂riα
=

np+1∑

j=1

∂x̃jα
∂riα

∂

∂x̃jα
=

np+1∑

j=1

Uji
∂

∂x̃jα
(50)
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The second derivative is rearranged as follows:

np+1∑

i=1

1

mi

∂2

∂r2iα

=

np+1∑

i=1

1

mi

[
np+1∑

j=1

Uji
∂

∂x̃jα

(
np+1∑

k=1

Uki
∂

∂x̃kα

)]

=

np+1∑

i=1

1

mi

[(
np+1∑

j=1

np+1∑

k=1

UjiUki

)
∂

∂x̃jα

∂

∂x̃kα

]

=

np+1∑

i=1

1

mi

[(
np∑

j=1

np∑

k=1

UjiUki
∂2

∂xjα∂xkα
+ 2

np+1∑

j=1

UjiUnp+1,i
∂

∂xjα

∂

∂Xα

+ U2
np+1,i

∂2

∂X2
α

)]

=

np∑

j=1

np∑

k=1

np+1∑

i=1

1

mi

UjiUki
∂2

∂xjα∂xkα

+ 2

np+1∑

j=1

np+1∑

i=1

1

mi

Uji
mi

mtot

∂

∂xjα

∂

∂Xα

+

np+1∑

i=1

1

mi

(
mi

mtot

)2
∂2

∂X2
α

, (51)

where in the last equation the second term—which corresponds to the coupling of

the TI and center-of-mass coordinates—is zero due to the TI condition:

np+1∑

i=1

1

mi

Uji
mi

mtot

= 0, (52)

and the last term corresponds to the α’s component of the kinetic energy of the

center of mass:

np+1∑

i=1

1

mi

(
mi

mtot

)2

=
1

mtot

. (53)
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Thereby, we can introduce the translationally invariant kinetic energy operator (re-

member that the TI and CM coupling terms vanish):

T̂ = T̂ ′ − T̂CM

= T̂ ′ − 1

2mtot

∆XCM

= −1

2

∑

α

np∑

j=1

np∑

k=1

Λjk
∂2

∂xjα∂xkα

= −1

2

np∑

j=1

np∑

k=1

Λjk∇T
xj
∇xk (54)

with

Λjk =

np+1∑

i=1

1

mi

UjiUki. (55)

For a particular choice of the TI Cartesian coordinates the elements of the mass-

scaled metric tensor, Λ, can be calculated. For example, Jacobi coordinates are

orthogonal, and thus Λ is diagonal: Λij = δij
1
µi

with the µi Jacobi reduced mass.
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V. BASIS FUNCTIONS

Ideally the basis functions span a space which include the exact eigenfunctions of

the Hamiltonian. In practice, the space is enlarged so that the best eigenfunction

approaches the exact solution. It is often preferred to define basis functions, which

are eigenfunctions of the conserved quantities (“variation after projection”), but it

is also possible to use basis functions which are not symmetry adapted and the

symmetry is restored numerically during the course of the variational computation.

In what follows, we shall apply basis functions which are symmetry-adapted func-

tions:

Φ[λ,ς] = Â{φ[λ]χ[ς]}, (56)

which is an (anti)symmetrized product of spatial functions, φ[λ], and spin functions,

χ[ς]. The spatial and spin functions are eigenfunctions of the total angular momen-

tum and the parity, λ = (N,MN , p), and the spin angular momentum operators,

ς = (Sa,MSa , Sb,MSb , . . .) (a, b, . . . denote the particle type), respectively. The sym-

metrization or antisymmetrization operator is

Â = (Nperm)−1/2
Nperm∑

p=1

εpP̂p (57)

for bosonic and fermionic-type particles. P̂p ∈ Sna⊗Snb⊗. . . is an operator permuting

identical particles and εp = −1 if P̂p represents an odd number of interchanges of

fermions, otherwise εp = +1.

In a variational approach which uses symmetry-adapted basis functions, the quan-

tum numbers corresponding to the conserved quantities can be specified on the

“input” of a computation.
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A. Spatial functions

We would like to use spatial functions which are

• square integrable

• positive definite

• analytic matrix elements for the common operators

• generally applicable for (np + 1)-particle systems

• form (or approach to) a complete basis set

There are few candidates, which are known to have analytic matrix elements with

the most common operators and are generally applicable to (np+1)-particle systems

1. Gaussian-type orbital: exp
(
−αi

2
r2i
)

2. Gaussian-type geminal: exp
(
−α

2
(ri − rj)2

)

3. many-particle explicitly correlated Gaussian (ECG): exp
(
−1

2
rT(A⊗ I3)r

)

4. primitive ECG: exp
(
−1

2
rT(A⊗ I3)r + sTr

)

5. floating ECG: exp
(
−1

2
(r −R)T(A⊗ I3)(r −R)

)

6. ECG with angular prefactor: θ(r) exp
(
−1

2
rT(A⊗ I3)r

)

A few comments are in order:

• It is non-trivial but it can be shown that a Gaussian basis set is complete

(“nodeless harmonic oscillator functions as a basis”. . . )

• Gaussian functions do not satisfy the cusp condition. . .

• Functions 1–3 are angular momentum and parity eigenfunctions with N = 0

and p = +1.

• Functions 4–5 are not angular momentum eigenfunctions unless s = 0 and

R = 0, respectively, when they are (N = 0, p = +1) functions.

• Function 6 can be made an angular momentum and parity eigenfunction (N ≥
0) with an appropriate choice of the angular prefactor.
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1. Angular symmetry, θ(r)

Solutions of the

∆rf(r) = 0, r ∈ R3 (58)

are the solid spherical harmonics (l = 0, 1, . . . and m = −l, . . . , l)

f(r) = rlYlm(r̂) = Ylm(r), (59)

where

r = |r| and r̂ =
1

r
r =




sinϑ cosϕ

sinϑ sinϕ

cosϑ


 (60)

and

Y ∗lm(r̂) = (−1)lYl,−m(r̂). (61)

Thereby, for the single-particle case and natural parity, p = (−1)L, we may choose

the angular prefactor as:

θLM(r) = YLM(r) = rLYLM(r̂). (62)

a. Vector-coupled product of solid spherical harmonics For the many-particle

case with N particles, the angular prefactor can be defined as a vector-coupled

product of solid spherical harmonics. (The total angular momentum is commonly

denoted by L in the physics literature, while it is labeled with N in molecular

spectroscopy. In this subsection, we shall use L for the total angular momentum and
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N for the particle number to simplify notation.):

θLM(r) =
[[

[Yl1(r1)× Yl2(r2)]L12
× Yl3(r3)

]
L123
× . . .× YlN (rN)

]
LM

=
∑

κ={m1,m2,...,mN}
cκ

N∏

i=1

Ylimi(ri) (63)

where cκ is a product of Clebsch–Gordan coefficients needed to couple the orbital

angular momenta to the specified quantum numbers, e.g.,

cκ = 〈l1m1, l2m2|L12m1 +m2〉〈L12m1 +m2, l3m3|L123m1 +m2 +m3〉

· . . . · 〈L12...N−1m1 +m2 + . . .+mN−1, lNmN |LM〉 (64)

A few comments concerning this representation are collected in the following list:

• in this representation each relative motion has a definite angular momentum,

e.g., L12, . . . , L12...N−1;

• since the subsystems’ angular momenta is not a conserved quantity,

it may be important to include several sets of angular momenta

(l1, l2, . . . , lN , L12, L123, . . .);

• when the inclusion of higher partial waves is necessary a faster convergence

can be achieved with a particular set of angular momenta using different sets

of relative coordinates;

• Since θLM(x) can be expressed by different partial-wave decompositions in

different coordinate systems, we conclude that the partial-wave decomposition

may not be so important after all.

• The evaluation of analytic matrix elements becomes intractable as the number

of particles increases and higher and higher number of partial-wave contribu-

tions are included.

• These observations led to a different generalization of YLM to the many-particle

case.
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b. Global vector representation Let us define a global vector (GV) as a linear

combination of the particle coordinates

v =
N∑

i=1

uiri = (u⊗ I3)Tr (65)

and introduce the angular prefactor for this global vector as

θLM(r) = v2K+LYLM(v̂) = v2KYLM(v). (66)

Minimization of the energy functional with respect to u will allow us to find the

most suitable angle or linear combination of angles. The parameters u1, u2, . . . , uN

are continuous, which is an advantage in practice in comparison with the integer

arrays of subsystems’ angular momenta, (l1, l2, . . . , lN , L12, L123, . . .).

c. Relationship between the two forms of the many-particle angular factors

Theorem about the equivalence of the global-vector representation (GVR)

and a vector-coupled product representation in a variational procedure.

Any GVR function

f(r) = v2KYLM(v) with v =
N∑

i=1

uiri (67)

can be expressed as a linear combination of vector-coupled products of solid spherical

harmonics:

g(r) = r2k11 r2k22 . . . r2kNN

[[
[Yl1(r1)× Yl2(r2)]L12

× Yl3(r3)
]
L123
× . . .× YlN (rN)

]
LM

(68)

where ki, li ≥ 0 and 2k1 + l1 + 2k2 + l2 + . . . 2kN + lN = 2K + L.

Proof: Instead of presenting the full proof, which can be done by induction, we

sketched the main steps for a two-particle case with v = r1 + r2.
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We shall express the integral

I =

∫
dâ YLM(â)(a · v)2K+L (69)

both by GVR and by a linear combination of vector-coupled products. During the

course of the calculations, we often use a known identity:

(a · r)n =
∑

2k+l=n

Bkla
2kr2k

l∑

m=−l
Y∗lm(a)Ylm(r)

=
∑

2k+l=n

Bkla
2kr2k(−1)l

√
2l + 1 [Yl(a)× Yl(r)]00 (70)

with

Bkl =
4π(2k + l)!

2kk!(2k + 2l + 1)!!
. (71)

Using this identity, we write the integral as

I =

∫
dâ YLM(â)

∑

2k+l=2K+L

Bkla
2kv2k

l∑

m=−l
alY ∗lm(â)vlYlm(v̂)

=
∑

2k+l=2K+L

Bkla
2kv2k

l∑

m=−l
alvlYlm(v̂)

∫
dâ YLM(â)Y ∗lm(â)

=
∑

2k+l=2K+L

Bkla
2kv2k

l∑

m=−l
alvlYlm(v̂)δlLδmM

= BkLa
2k+Lv2k+LYLM(v̂) (72)
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An alternative way of writing I starts with a direct expansion of the polynomial:

(a · r1 + a · r2)2K+L

=
∑

p+q=2K+L

(2K + L)!

p!q!
(a · r1)p(a · r2)q

=
∑

p+q=2K+L

(2K + L)!

p!q!

[ ∑

2k1+l1=p

Bk1l1a
2k1r2k11 (−1)l1

√
2l1 + 1 [Yl1(a)× Yl1(r1)]00

]

[ ∑

2k2+l2=q

Bk2l2a
2k2r2k22 (−1)l2

√
2l2 + 1 [Yl2(a)× Yl2(r2)]00

]
.

(73)

It is possible to simplify the â-dependent integral of the multiple spherical harmonics

functions as

∫
dâ YLM(â) [Yl1(a)× Yl1(r1)]00 [Yl2(a)× Yl2(r2)]00

=
∑

λ

√
2λ+ 1

(2l1 + 1)(2l2 + 1)
al1+l2C(l1l2;λ)

∫
dâ YLM(â) [Yλ(â)× [Yl1(r1)× Yl2(r2)]λ]00

=
∑

λ

√
2λ+ 1

(2l1 + 1)(2l2 + 1)
al1+l2C(l1l2;λ)δλL

(−1)L√
2L+ 1

[Yl1(r1)× Yl2(r2)]LM

= al1+l2
(−1)LC(l1l2;L)√
(2l1 + 1)(2l2 + 1)

[Yl1(r1)× Yl2(r2)]LM (74)

where we used that a vector-coupled product of two spherical harmonics with the

same angles and an even l + l′ + L value can be written as

[Yl(r̂)× Yl′(r̂)]LM = C(ll′;L)YLM(r̂) (75)

with

C(ll′;L) =

√
(2l + 1)(2l′ + 1)

4π(2L+ 1)
〈l0l′0|L0〉. (76)
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By plugging Eqs. (73) and (74) into the original integral, Eq. (69), we obtain

I =

∫
dâ YLM(â)(a · v)2K+L

=

∫
dâ YLM(â)(a · r1 + a · r2)2K+L

=
∑

p+q=2K+L

(2K + L)!

p!q!

∑

2k1+l1=p

∑

2k2+l2=q

Bk1l1Bk2l2(−1)l1+l2a2k1+2k2r2k11 r2k22

∫
dâ YLM(â) [Yl1(a)× Yl1(r1)]00 [Yl2(a)× Yl2(r2)]00

=
∑

p+q=2K+L

(2K + L)!

p!q!

∑

2k1+l1=p

∑

2k2+l2=q

Bk1l1Bk2l2(−1)l1+l2a2k1+2k2r2k11 r2k22

al1+l2
(−1)LC(l1l2;L)√
(2l1 + 1)(2l2 + 1)

[Yl1(r1)× Yl2(r2)]LM

=
∑

p+q=2K+L

∑

2k1+l1=p

∑

2k2+l2=q

(2K + L)!

p!q!
Bk1l1Bk2l2

(−1)L+l1+l2C(l1l2;L)√
(2l1 + 1)(2l2 + 1)

a2k1+l1+2k2+l2x2k11 + x2k22 [Yl1(r1)× Yl2(r2)]LM . (77)

We repeat the final expression of Eq. (72)

I = BkLa
2k+Lv2k+LYLM(v̂), (78)

which completes the proof for the two-particle case, i.e., the GVR angular function

can be expressed in terms of linear combination of vector-coupled product spherical

harmonics functions.

d. Generator integral for GVR There are many interesting mathematical prop-

erties of the angular functions in the different representations. We present in this

paragraph an important property, which is extensively used during the course of the

analytic calculation of the integrals of physical operators with GVR-ECG functions.

Statement about the relation of r2K+LYLM(r̂) and eλa·r:

∫
dâ YLM(â)

(
∂2K+L

∂λ2K+L
eλa·r

)

λ=0,a=1

= BKLr
2K+LYLM(r̂) (79)
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Proof:

(
∂n

∂λn
eλa·r

)

λ=0

=

(
∂n

∂λn

∞∑

m=0

1

m!
λm(a · r)m

)

λ=0

= (a · r)n

=
∑

2k+l=n

Bkla
2k+lr2k+l

l∑

m=−l
Y ∗lm(â)Ylm(r̂) (80)

Thus,

∫
dâ YLM(â)

(
∂n

∂λn
eλa·r

)

λ=0,a=1

=

∫
dâ YLM(â)

∑

2k+l=n

Bklr
2k+l

l∑

m=−l
Y ∗lm(â)Ylm(r̂)

=
∑

2k+l=n

Bklr
2k+l

l∑

m=−l

[∫
dâ YLM(â)Y ∗lm(â)

]
Ylm(r̂)

=
∑

2k+l=n

Bklr
2k+l

l∑

m=−l
δlLδmMYlm(r̂)

= BkLr
2k+LYLM(r̂) (81)

with k = (n− L)/2.

During the integral evaluation we shall use the following form for the spatial basis

functions corresponding to the λ = (N,MN , p) quantum numbers with p = (−1)N

natural parity, which is represented by an angular prefactor in the global vector

representation (GVR-ECG function):

φ[λ](r;A,u, K) = |v|2K+NYNMN
(v̂) exp

(
−1

2
rT(A⊗ I3)r

)
, (82)

=
1

BKN

∫
dê YNMN

(ê)

{
∂2K+N

∂a2K+N
g(r;A, au⊗ e)

}

a=0,|e|=1

, (83)

with the generating function

g(r;A, au⊗ e) = exp

(
−1

2
rT(A⊗ I3)r + au⊗ eTr

)
(84)
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and the global vector

v = (u⊗ e)Tr =

np+1∑

i=1

uiri. (85)

B. Spin functions

If one-particle basis functions, e.g., orbitals, are employed, it is straightforward to

introduce symmetry and antisymmetry for bosonic and fermionic particles by using

a Hartree product and Slater determinant, respectively. However, for many-particle

spatial functions, it is necessary to perform the (anti)symmetrization of the product

of the spin and spatial functions explicitly using Eqs. (56) and (57). The previous

subsection was about the construction of symmetry-adapted spatial functions, this

subsection will introduce symmetry-adapted spin functions. By symmetry-adapted

we mean that the function, χ[ς], is an eigenfunction of the total spin operators with

the selected eigenvalues, Sa,MSa , Sb,MSb , . . . for each particle type a, b, . . .:

Ŝ2
aχ = Sa(Sa + 1)χ (86)

Ŝa,zχ = MSaχ (87)

In most of the cases, it is appropriate to consider the different particle types inde-

pendently (the positronium molecule, Ps2, is a notable exception). In what follows,

we present examples for the explicit construction of two- and three-particle spin

eigenfunctions of spin-1/2 particles.

The elementary spin functions are labelled with

α = σ 1
2
, 1
2
, (88)

which is an eigenfunction of the one-particle spin-operators:

ŝ2σ 1
2
, 1
2

=
1

2

(
1 +

1

2

)
σ 1

2
, 1
2

⇒ ŝ2α =
3

4
α

ŝzσ 1
2
, 1
2

=
1

2
σ 1

2
, 1
2

⇒ ŝzα =
1

2
α (89)
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Similarly,

β = σ 1
2
,− 1

2
, (90)

which is an eigenfunction of the one-particle spin-operators:

ŝ2σ 1
2
,− 1

2
(1) =

1

2

(
1 +

1

2

)
σ 1

2
,− 1

2
(1) ⇒ ŝ2β =

3

4
β

ŝzσ 1
2
,− 1

2
(1) = −1

2
σ 1

2
,− 1

2
(1) ⇒ ŝzβ = −1

2
β. (91)

In order to construct the many-particle spin function ΣS,MS
(1, 2, . . . , n) with S and

MS total spin quantum numbers, we shall couple the elementary spin function fol-

lowing the rules of angular momentum coupling. First of all, for n particles the

α and β functions are distributed among the particles according to the following

restrictions:

nα + nβ = n (92)

and

MS = msαnα +msβnβ

=
1

2
nα −

1

2
nβ. (93)

How many uncoupled n-particle basis functions are there, which contribute to

ΣS,MS
(1, 2, . . . , n)? Since ΣS,MS

(1, 2, . . . , n) must contain nα = (n + 2MS)/2 α-type

and nβ = (n− 2MS)/2 β-type one-particle spin functions, σ 1
2
,mSα

(i), there is a total

number of NS =


 n

nα


 =


 n

nβ


 uncoupled n-particle spin functions which may

contribute to ΣS,MS
(1, 2, . . . , n).

In what follows, we obtain the explicit formulae for ΣS,MS
(1, 2, . . . , n) as a lin-

ear combination of the uncoupled many-particle spin functions using the Clebsch–

Gordan expansion coefficients and the normalization requirement.
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Two spin-1/2 particles, Σ00(1, 2) (“singlet”, 2 · 0 + 1 = 1):

n = 2,MS = 0 ⇒ nα = 1, nβ = 1, NS =


 n

nα


 = 2. (94)

So, there are 2 uncoupled functions: 1 α-type and 1 β-type functions.

Σ0,0(1, 2) = [σ 1
2
(1)× σ 1

2
(2)]0,0

= 〈1
2
, 1
2
, 1
2
,−1

2
|0, 0〉 σ 1

2
, 1
2
(1)σ 1

2
,− 1

2
(2)

+ 〈1
2
,−1

2
, 1
2
, 1
2
|0, 0〉 σ 1

2
,− 1

2
(1)σ 1

2
, 1
2
(2)

= 1√
2
σ 1

2
, 1
2
(1)σ 1

2
,− 1

2
(2)− 1√

2
σ 1

2
,− 1

2
(1)σ 1

2
, 1
2
(2)

= 1√
2

(|αβ〉 − |βα〉)

= 1√
2

(| ↑↓〉 − | ↓↑〉) . (95)

Two spin-1/2 particles, Σ10(1, 2) (“triplet”, 2 · 1 + 1 = 3):

n = 2,MS = 0 ⇒ nα = 1, nβ = 1, NS =


 n

nα


 = 2 (96)

and

Σ1,0(1, 2) = [σ 1
2
(1)σ 1

2
(2)]1,0

= 〈1
2
, 1
2
, 1
2
,−1

2
|1, 0〉 σ 1

2
, 1
2
(1)σ 1

2
,− 1

2
(2)

+ 〈1
2
,−1

2
, 1
2
, 1
2
|1, 0〉 σ 1

2
,− 1

2
(1)σ 1

2
, 1
2
(2)

= 1√
2
σ 1

2
, 1
2
(1)σ 1

2
,− 1

2
(2) + 1√

2
σ 1

2
,− 1

2
(1)σ 1

2
, 1
2
(2)

= 1√
2

(| ↑↓〉+ | ↓↑〉) . (97)

Three spin-1/2 particles, Σ1
2
,
1
2
(1, 2, 3) (“doublet”, 2 · 1/2 + 1 = 2): For three

spin-1/2 particles the Σ 1
2
, 1
2
(1, 2, 3) spin function has MS = 1/2, and thus nα = 2

and nβ = 1 with Ns =
(
n
nα

)
=
(
n
nβ

)
= 3 uncoupled basis functions. Then, the total

spin function expressed in terms of the uncoupled spin functions can be obtained by
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evaluating

Σ 1
2
, 1
2
(1, 2, 3) = c1

[[
σ 1

2
(1)σ 1

2
(2)
]
1
σ 1

2
(3)
]

1
2
, 1
2

+ c2

[[
σ 1

2
(1)σ 1

2
(2)
]
0
σ 1

2
(3)
]

1
2
, 1
2

. (98)

The normalization condition for Σ 1
2
, 1
2
(1, 2, 3) requires c21 + c22 = 1, which can be

fulfilled by choosing c1 = sinϑ1 and c2 = cosϑ1 with ϑ1 ∈ [−π/2, π/2]. Then,

we couple the one-particle spin functions, insert the corresponding Clebsch–Gordan

coefficients, and obtain:

Σ 1
2
, 1
2
(1, 2, 3) = sinϑ1〈1, 0, 12 , 12 |12 , 12〉

[
σ 1

2
(1)σ 1

2
(2)
]
1,0

σ 1
2
, 1
2
(3)

+ sinϑ1〈1, 1, 12 ,−1
2
|1
2
, 1
2
〉
[
σ 1

2
(1)σ 1

2
(2)
]
1,1

σ 1
2
,− 1

2
(3)

+ cosϑ1〈0, 0, 12 , 12 |12 , 12〉
[
σ 1

2
(1)σ 1

2
(2)
]
0,0
σ 1

2
, 1
2
(3)

= κ1(ϑ1) σ 1
2
, 1
2
(1)σ 1

2
,− 1

2
(2)σ 1

2
, 1
2
(3)

+ κ2(ϑ1) σ 1
2
, 1
2
(1)σ 1

2
, 1
2
(2)σ 1

2
,− 1

2
(3)

+ κ3(ϑ1) σ 1
2
,− 1

2
(1)σ 1

2
, 1
2
(2)σ 1

2
, 1
2
(3) . (99)

where the calculation of the linear combination coefficients κ(ϑ1) =

(κ1(ϑ1), κ2(ϑ1), κ3(ϑ1)), is left for an exercise. The final result is

κ1(ϑ1) = 1√
2

cosϑ1 − 1√
6

sinϑ1 (100)

κ2(ϑ1) =
√

2
3

sinϑ1 (101)

κ3(ϑ1) = − 1√
2

cosϑ1 − 1√
6

sinϑ1 . (102)

If there are several types of identical particles, a, b, . . . in the system, the total

spin function can be written as the product of the coupled functions of each type:

χS,MS
= ΣSa,MSa

(1, . . . , na)ΣSb,MSb
(1, . . . , nb) . . . (103)

where (S,MS) is a collective index for (Sa,MSa), (Sb,MSb), . . . Since the total spin

function for any particle type a, ΣSa,MSa
(1, . . . , na), can be written as a linear com-

bination of uncoupled many-particle spin functions, the χS,MS
function can also be
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written in a similar way, and thus for later convenience we introduce the shorthand

notation:

χS,MS
(ϑ) =

Ns∑

n=1

κn(ϑ)|n〉σ, (104)

where |n〉σ denotes the product of uncoupled many-particle spin functions for each

particle type, Ns = NsaNsb . . ., σ refers to the spin degrees of freedom, and ϑ con-

tains the free parameters if there are several “partial waves”. The value of κn(ϑ) is

determined by the normalization condition, the Clebsch–Gordan coefficients, and the

angular momentum coupling procedure carried out for each particle types similarly

to Eqs. (95)–(102).
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VI. MATRIX ELEMENTS

A matrix element of a spin-independent and permutationally invariant opera-

tor, Ô with (anti)symmetrized, symmetry-adapted, λ = (N,MN , p) and ς =

(Sa,MSa , Sb,MSb , . . .), spin-spatial basis function is evaluated as

O
[λ,ς]
IJ = 〈Φ[λ,ς]

I |Ô|Φ
[λ,ς]
J 〉r,σ

= 〈Â{φ[λ]
I χ

[ς]
I }|Ô|Â{φ

[λ]
J χ

[ς]
J }〉r,σ . (105)

The antisymmetrizer (which generates Nperm ∼ (np+1)! elements) can be eliminated

from the bra by using its quasi-idempotent property, ÂÂ = (Nperm)1/2Â:

O
[λ,ς]
IJ =

Nperm∑

p=1

εp〈φ[λ]
I χ

[ς]
I |Ô|P̂p{φ

[λ]
J χ

[ς]
J }〉r,σ

=

Nperm∑

p=1

εp〈χ[ς]
I |P̂pχ

[ς]
J 〉σ〈φ

[λ]
I |Ô|P̂pφ

[λ]
J 〉r

=

Nperm∑

p=1

c
[ς]
IJp
O

[λ]
IJp

(106)

where the spin and the spatial integrals are separated to

c
[ς]
IJp

= εp〈χ[ς]
I |P̂pχ

[ς]
J 〉σ (107)

O
[λ]
IJp

= 〈φ[λ]
I |Ô|P̂pφ

[λ]
J 〉r . (108)

Since the operator is spin-independent, the calculation of c
[ς]
IJp

requires simple alge-

bra. The calculation of O
[λ]
IJp

is less trivial and certainly depends on Ô, which is, in

the present discussion, the identity, Î, the kinetic, T̂ , or the potential energy, V̂ , op-

erator. For the full calculation of the analytic matrix elements see the Recommended

Literature. In what follows, we highlight the most important steps of the derivation.
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First of all, a matrix element of an operator Ô is written using the exponential

generator integral for the angular prefactor, Eq. (83),

〈φ[λ](r; A , u, K)|Ô|φ[λ](r; A ′, u ′, K ′)〉r

=
1

BKNBK′N

∫
dê

∫
dê′ θ∗NMN

(ê)θNMN
(ê′)

×
{
∂2K+L

∂a2K+L

∂2K
′+L

∂a′2K
′+L

〈
g
(
r; A , s(a, u, e)

)
|Ô|g

(
r; A ′, s ′(a′, u ′, e′)

)〉
r

}

a=a′=0,|e|=|e′|=1

,

(109)

which is evaluated according to the following steps

1. Calculation of the integral with respect to the spatial coordinates r and the

generating functions (floating ECGs) is usually straightforward for the most

common operators

IO,1(s , s ′) = 〈g(r; A , s)|Ô|g(r; A ′, s ′)〉r (110)

2. The differentiation of the integral in Eq. (110) is carried out for ∂2K+N/∂a2K+N

and ∂2K
′+N/∂a′2K

′+N and the result is expressed in terms of polynomials of

scalar products, eTe′,

I
[(N)]
O,2 (e, e′) =

{ ∂2K+N

∂a2K+N

∂2K
′+N

∂a′2K
′+N IO,1

(
s(a, u, e), s ′(a′, u ′, e′)

)}
a=a′=0,|e|=|e′|=1

(111)

3. In the last step the angular integral is calculated:

I
[λ=(N,MN ,(−1)N )]
O,3 =

1

BKLBK′L

∫
dê

∫
dê′ Y ∗NMN

(ê)YNMN
(ê′)I [(N)]

O,2 (e, e′).

(112)
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During the course of the evaluation of the angular integral, we make use of the

following identity of spherical harmonics

(eTe′)k =
k∑

l=0

[(k − l)/2 ∈ N0]

B k−l
2
,l

l∑

m=−l
Y ∗lm(ê)Ylm(ê′) . (113)

which is for k = 1

eTe′ =
4π

3

1∑

m=−1
Y ∗1m(ê)Y1m(ê′) . (114)

Concerning practical applications, it is important to note that for large (2K+L) > 4

values special care must be taken during the course of the implementation of the

analytic formulae in order to avoid numerical instabilities in finite number represen-

tation (double precision in Fortran). To ensure numerical stability we introduce a

so-called “quasi-normalization” of the basis functions, which allows us to cancel some

problematic terms. We call the normalization with respect to the spatial function,

Φ[λ,ς] = (〈φ[λ]|φ[λ]〉r)−1/2 Â{φ[λ]χ[ς]} , (115)

quasi-normalization. In a computer implementation it may also be useful to rely on

a logarithmic evaluation of products and fractions, e.g.,

(a · b)/(c · d) = sign(ab/cd) · 10(lg a+lg b−lg c−lg d) (116)

to calculate small numbers as ratios and products of large ones. Furthermore, it is

possible to factor out a term, which appears in the integrals,

FKL =
K∑

m=0

2m(L+m+ 1)!

(K −m)!(K −m)!m!(2L+ 2m+ 2)!
, (117)

which is is pre-calculated with infinite precision arithmetics (e.g., using the Mathe-

matica program) for a series of K and L integer values. These numbers are stored in

a file and are read in by the Fortran program at the beginning of each computation.
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VII. COMPUTATION OF EIGENSTATES

In the previous sections we outlined how the matrix representation of the Hamilto-

nian is constructed in a finite basis set (with Nb basis functions). It is often conve-

nient to use a basis set which is not orthonormal (such as the ECG-GVR functions)

and thus, we have to consider the generalized eigenproblem with a non-diagonal

overlap matrix, S 6= I:

Hc = ESc, (118)

where H and S ∈ RNb×Nb are real and symmetric matrices. In order to be able to

use standard direct eigensolver routines (e.g., LAPACK), we need to transform this

equation as follows.

We assume that the basis set is linearly independent, and multiply Eq. (118) with

S−1/2 from the left

S−
1
2Hc = ES

1
2c (119)

S−
1
2HS−

1
2S

1
2c = ES

1
2c (120)

H ′c′ = Ec′ (121)

with

H ′ = S−
1
2HS−

1
2 (122)

and

c′ = S
1
2c ⇒ c = S−

1
2c′. (123)

A few comments are collected as follows.

• Note that the transformation in Eqs. (119)–(121) is related to Löwdin’s (sym-

metric) orthogonalization (which is different from the Gram–Schmidt orthog-

onalization scheme).
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• If there is a linear dependence within the basis set, there are λi = 0 eigen-

value(s) of the S overlap matrix.

• Note that in finite precision arithmetics, near linear dependencies are also de-

structive, i.e., when there are λi ∼ 10−14, which is almost zero in the commonly

used 8-byte representation of real numbers. In this case, Lödwin’s generalized

orthogonalization scheme may be adopted, which allows us to carry out a

transformation similar to Eqs. (119)–(121) but neglecting the near-linear de-

pendent part of the basis space. Alternatively, a better parameterization of

the basis set ensures to avoid near linear dependencies.

a. The stabilization method In a series of variational basis representation

(VBR) computations, we obtain approximations to the discrete eigenvalues of the

Hamiltonian, which converge from above to the exact eigenvalues (ensured by the

variational principle). In addition, by computing not only the few lowest-energy

eigenvalues, we may observe the onset of the dissociation threshold and a VBR rep-

resentation of continuum states. Beyond the dissociation threshold, we may observe

energy intervals with an increased density of states, which correspond to quasi-bound

states with a finite lifetime (although in this regime the variational principle is not

applicable). (⇒ Figure) In practice, long-lived resonances can be observed in a series

of VBR computations by noticing the stabilization of an energy window within the

continuum regime over a series of computations.

b. Complex coordinate rotation method In an alternative mathematical descrip-

tion, in which we choose to scale the physical distances by a complex number,

r → reiϑ, and use VBR for the scaled Hamiltonian leads to a complex symmet-

ric eigenproblem.

Ĥ = T̂ + V̂ → Ĥ(θ) = e−2iϑT̂ + e−iϑV̂ . (124)

The corresponding matrix equation is written as

H̃(ϑ)c̃i(ϑ) = Ei(ϑ)Sc̃i(ϑ), (125)
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which, similarly to its real analogue, Eq. (118), is transformed to

H̃
′
(ϑ)c̃′i(ϑ) = Ei(ϑ)c̃′i(ϑ) (126)

with

H̃
′
(ϑ) = e−2iϑS−1/2TS−1/2 + e−iϑS−1/2V S−1/2

= cos(2ϑ)T ′ + cos(ϑ)V ′ − i(sin(2ϑ)T ′ + sin(ϑ)V ′). (127)

The complex symmetric eigenproblem, Eq. (126), is solved using LAPACK library

routines [1], and the stabilization point, E = (E,−Γ/2) with the E energy and Γ

width (the lifetime is τ = ~/Γ), on the complex energy plane is identified visually.

The eigenvalues of the scaled Hamiltonian lie on the complex plane and cor-

respond to bound and resonance states of the original operator. (⇒ Figure) For

the eigenvalues of this complex Hamiltonian, there are generalizations for the real

variational principle, which ensure their stationary property with respect to the

completeness of the basis set and the scaling angle, ϑ. The complex variational prin-

ciple(s) is however less practical for the parameterization of the basis set than their

real analogue.
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VIII. PARAMETERIZATION OF THE BASIS FUNCTIONS

1. Non-linear parameterization strategy

a. Parameter selection The nonlinear parameters for each basis function are

selected and optimized based on the variational principle, which translates in prac-

tice to the simple rule: the lower the energy, the better the parameter set. The

parameter selection is carried in a stochastic manner, in which new basis functions

are generated randomly one after the other. Trial values for the parameters of the

spatial basis functions, Eq. (83), K, ui, lnαij, are drawn from discrete uniform, con-

tinuous uniform, and normal distributions, respectively. The optimal parameters of

each distribution are estimated from short exploratory computations. Due to the

one-by-one generation of the basis functions, the updated eigenvalues can be evalu-

ated very efficiently using the known eigenvalues and eigenvectors corresponding to

the old basis set, and this allows for a rapid assessment of a trial parameter set.

b. Refinement The refinement of the basis-function parameters generated by

the stochastic variational method is necessary if very accurate solutions are required.

Similarly to the enlargement of the basis set, the basis functions are refined one

after the other using the fast eigenvalue update algorithm, which is used also for the

selection of a new basis function from a set of randomly generated trials. Refined

parameters can be found by random walk or using the Powell method [2] started

from the originally selected parameters for each basis function. The random-walk

refinement can be used to adjust the K integer value (for which the Powell method

is not applicable), however in practice it is usually sufficient to generate K from a

discrete uniform distribution spread over a pre-optimized interval and to refine only

the continuous variables, ui and αij by the Powell method. During the course of

and at the end of the enlargement of the basis set, every basis function is refined in

repeated cycles.

2. Parameterization strategy for resonances

Due to the lack of any practical approach relying on the complex variational

principle to select and optimize the non-linear parameters of the basis functions,
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we relied on the random generation of the parameters from some broad parameter

intervals. In addition, we have devised a parameter-transfer approach:

Ψ(A′) =

Nb∑

I=1

cIΦ
(A′)
I [PI(A)] (128)

in which a parameter set optimized based on the real variational principle for bound

states with one set of input parameters is transferred to a computation with other

input parameters (e.g., different quantum numbers). Note that the spatial symme-

tries of a basis function are determined by the quantum numbers, Eq. (82), and in

this sense, the parameters K, ui, and A, are transferable.
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(a) Non-linear parameters of the basis functions.
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(b) Sampling–importance resampling for the parameter generation.
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(c) Multi-channel (multi-coordinate) optimization of the non-linear parameters.

FIG. 2: Parameterization of the basis functions
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IX. VARIATIONAL RESULTS FOR FEW-PARTICLE SYSTEMS

A. Atomic systems

1. 7Li =
{
7Li3+, e−, e−, e−

}

TABLE I: Calculated energy levels of 7Li=
{
7Li3+, e−, e−, e−

}
.

N a p a Se
a E b η c δE / µEh

d Ref.

0 1 1/2 −7.477 451 901 1.3 · 10−9 −0.029 [3]

1 −1 1/2 −7.409 557 349 8.8 · 10−9 −0.410 [4]

2 1 1/2 −7.334 926 959 1.1 · 10−9 −0.347 [5, 6]

a N : quantum number of the total angular momentum without the spins; p: parity; Se:

total spin quantum number of the electrons.
b m7Li3+/me+ = 12 786.393 The wave functions were optimized as a linear combination of

Nb = 1 500 basis functions and the exponents of the polynomial prefactors were 2K = 0

or 2, selected randomly.
c η = |1 + 〈Ψ|V̂ |Ψ〉/(2〈Ψ|T̂ |Ψ〉)|.
d δE = E(Ref.)− E.
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B. Positron-electron systems

1. Ps− = {e+, e−, e−}

parameterization of the basis functions:

• minimization of the energy

• random generation of parameters, sampling-importance resampling

TABLE II: Identified bound- and resonance-state energies and resonance widths, in Eh,

of Ps− = {e−, e−, e+}.a

(N, p, S−) b Re(E) c Γ/2 c Re(ERef)
c ΓRef/2

c Ref.

(0,+1, 0) −0.262 005 070 d 0 d −0.262 005 070 0 [7]

E(Ps(n = 1)) = −0.25 (lowest dissociation threshold)
(0,+1, 0) −0.076 030 455 2.152 · 10−5 −0.076 030 442 2.151 7 · 10−5 [8]
(0,+1, 0) −0.063 649 173 4.369 · 10−6 −0.063 649 175 4.339 3 · 10−6 [8]
(0,+1, 0) −0.062 609 2.5 · 10−5 −0.062 550 5.0 · 10−7 [9]

E(Ps(n = 2)) = −0.062 5
(0,+1, 0) −0.035 341 850 3.730 · 10−5 −0.035 341 885 3.732 9 · 10−5 [8]
(0,+1, 0) −0.029 845 700 2.781 · 10−5 −0.029 846 146 2.635 6 · 10−5 [8]
(0,+1, 0) −0.028 271 1.8 · 10−5 −0.028 200 7.5 · 10−6 [9]

E(Ps(n = 3)) = −0.027 7̇
(0,+1, 0) −0.020 199 000 8.800 · 10−5 −0.020 213 921 6.502 6 · 10−5 [8]

E(Ps(n = 1)) = −0.25 (lowest dissociation threshold)
(0,+1, 1) −0.063 537 352 2.132 · 10−9 −0.063 537 354 1.570 0 · 10−9 [8]
(0,+1, 1) −0.062 591 2.6 · 10−7 −0.062 550 2.5 · 10−10 [9]

E(Ps(n = 2)) = −0.062 5
(0,+1, 1) −0.029 369 870 1.300 · 10−7 −0.029 370 687 9.395 0 · 10−8 [8]
(0,+1, 1) −0.028 21 1.9 · 10−5 −0.028 05 5.0 · 10−8 [9]

E(Ps(n = 3)) = −0.027 7̇
(0,+1, 1) −0.017 070 800 6.710 · 10−6 −0.017 101 172 3.560 9 · 10−7 [9]

a The dissociation threshold energies, in Eh, accessible for both the S− = 0 and 1
states are E(Ps(1)) = −1/4 = −0.25, E(Ps(2)) = −1/16 = −0.062 5, and
E(Ps(3)) = −1/36 = −0.027 7̇.
b N, p, and S−: total spatial angular momentum quantum number, parity, and
total spin quantum number of the electrons, respectively.
c Re(E) and Γ: resonance energy and width with Γ/2 = −Im(E).
d Bound state.
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2. Ps2 = {e+, e+, e−, e−}

parameterization of the basis functions:

• minimization of the energy

• random generation of parameters, sampling-importance resampling

TABLE III: Identified bound- and resonance-state energies and resonance widths, in Eh,

of Ps2 = {e−, e−, e+, e+}.a

(N, p, c) b (S−, S+) c Re(E) d Γ/2 d Re(ERef)
d ΓRef/2

d Ref.

(0,+1,+1) (0, 0) −0.516 003 789 741 e 0 e −0.516 003 790 416 0 [10]
(0,+1,+1) (0, 0) −0.329 38 3.03 · 10−3 −0.329 4 3.1 · 10−3 [11]
(0,+1,+1) (0, 0) −0.291 7 2.5 · 10−3 −0.292 4 1.95 · 10−3 [11]

(0,+1,−1) (0, 0) −0.314 677 072 e 0 e −0.314 673 3 0 [11]
(0,+1,−1) (0, 0) −0.289 789 3 7.7 · 10−5 −0.289 76 7 · 10−5 [11]
(0,+1,−1) (0, 0) −0.279 25 2.3 · 10−4 −0.279 13 1 · 10−4 [11]

(0,+1,+1) (1, 1) −0.277 2 5.4 · 10−4 −0.276 55 1.55 · 10−4 [11]

(0,+1,−1) (1, 1) −0.309 0 5.7 · 10−3 −0.308 14 1.2 · 10−4 [11]
(0,+1,−1) (1, 1) −0.273 3 2.3 · 10−3 −0.273 6 8.5 · 10−4 [11]

(0,+1,±1) (1, 0)/(0, 1) −0.330 287 505 e 0 e −0.330 276 81 0 [11]
(0,+1,±1) (1, 0)/(0, 1) −0.294 3 3.1 · 10−3 −0.293 9 2.15 · 10−3 [11]
(0,+1,±1) (1, 0)/(0, 1) −0.282 2 · 10−3 −0.282 2 8.5 · 10−4 [11]

a For the five symmetry blocks with different (N, p, c) quantum numbers and
(S−, S+) labels the lowest accessible thresholds are Ps(1S)+Ps(1S),
Ps(1S)+Ps(2P), Ps(1S)+Ps(2P), Ps(1S)+Ps(1S), Ps(1S)+Ps(2S,2P), respectively
[12]. The corresponding energies, in Eh, are E(Ps(1) + Ps(1)) = −1/2 = −0.5 and
E(Ps(1) + Ps(2)) = −5/16 = −0.312 5. (The black and gray coloring is used to
help the orientation.)
b N, p, and c: total spatial angular momentum quantum number, parity, and
charge conjugation quantum number, respectively.
c S− and S+: total spin quantum number for the electrons and the positrons,
respectively. In the last symmetry block, (S−, S+) = (0, 1) and (S−, S+) = (1, 0),
are not good quantum numbers because these spin states are coupled due to the
charge-conjugation symmetry of the Hamiltonian.
d Re(E) and Γ: resonance energy and width with Γ/2 = −Im(E).
e Bound states.

42



−0.003 3

−0.003 2

−0.003 1

−0.003 0

−0.002 9

−0.002 8

−0.329 8 −0.329 6 −0.329 4 −0.329 2 −0.329 0

Im
(E

)
[E

h
]

Re(E) [Eh]

FIG. 3: Localization of the parameters for the lowest-energy resonance state of Ps2 with

N = 0, p = +1, c = +1, and S− = 0, S+ = 0. The stabilization of the trajectories

with respect to the rotation angle (circles) and the basis functions (colors) is shown. The

stabilization point is located at (Re(E), Im(E)) = (−0.329 38,−0.003 03) Eh.
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C. Molecular systems

1. H+
2 = {p+,p+, e−}

parameterization of the basis functions:

• polynomial prefactors

• sampling-importance resampling, refinement with Powell’s method
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FIG. 4: Illustration of the computed pre-BO energy levels of H+
2 = {p+, p+, e−}. For

comparison the BO potential energy curves are also shown (on the left).

x
x

↑ x
y

↑

ortho para

even N : Ã 2Σ+
u X̃ 2Σ+

g

odd N : X̃ 2Σ+
g Ã 2Σ+

u

TABLE IV: Energy levels, dissociation energies (examples) of H+
2 = {p+,p+, e−}.

N p Sp E / Eh D / cm−1 Assignment

2 1 1 −0.499 731 516(7) 0.807(1) Ã 2Σ+
u , v = 0; ortho

. . .

0 1 0 −0.597 139 060(4) 21 379.290(2) X̃ 2Σ+
g , v = 0; para
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2. H2 = {p+,p+, e−, e−}

parameterization of the basis functions:

• polynomial prefactors

• sampling-importance resampling, refinement with Powell’s method

TABLE V: Assessment of the basis set parameterization: the lowest-lying bound-state

energies.

(N, p, Sp, Se)
a E/Eh

b ∆ERef/µEh
c Ref. Assignmentd

(0,+1, 0, 0) −1.164 025 030 −0.000 6 [13] X 1Σ+
g

(1,−1, 1, 0) −1.163 485 171 −0.001 4 [13] X 1Σ+
g

(2,+1, 0, 0) −1.162 410 408 −0.001 9 [13] X 1Σ+
g

(0,+1, 1, 0) −0.753 027 186 0.135 4 [14] B 1Σ+
u

(1,−1, 0, 0) −0.752 850 233 0.834 2 [14] B 1Σ+
u

(1,+1, 1, 0) −0.752 498 022 0.918 8 [14] B 1Σ+
u

(0,+1, 0, 1) −0.730 825 193 −0.006 9 [15] a 3Σ+
g

(1,−1, 1, 1) −0.730 521 418 0.008 0 [15] a 3Σ+
g

(2,+1, 0, 1) −0.729 916 268 0.047 9 [15] a 3Σ+
g

(0,+1, 1, 1) [−0.999 450 102] e [−5.578] f b 3Σ+
u

(1,−1, 0, 1) [−0.999 445 835] e [−9.844] f b 3Σ+
u

(2,+1, 1, 1) [−0.999 439 670] e [−16.010] f b 3Σ+
u

a N : total spatial angular momentum quantum number; p : parity, p = (−1)N ; Sp

and Se: total spin quantum numbers for the protons and the electrons, respectively.
b E: the energy obtained with the largest parameter set, PL, used in this study
corresponding to 15 500 basis functions for each set of quantum numbers. The
proton-electron ratio was mp/me = 1 836.152 672 47 [16].
c ∆ERef = ERef − E with ERef being the best available theoretical energy value in
the literature.
d Born–Oppenheimer electronic state label. Each energy level given here can be
assigned to the lowest-energy vibrational level of the electronic state.
e The lowest-energy eigenvalue of the Hamiltonian obtained for the given set of
quantum numbers.
f The non-relativistic energy of two ground-state hydrogen atoms,
E(H(1) + H(1)) = −0.999 455 679 Eh, was used as reference.
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FIG. 5: Illustration of the computed pre-BO levels of H2 = {p+, p+, e−, e−}. For compari-

son the BO potential energy curves are also shown (on the left).
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According to the spatial and permutational symmetry properties of the H2 molecule,

there are four different blocks with natural parity

B1: “X 1Σ+
g block”: N ≥ 0, p = (−1)N , Sp = (1− p)/2, Se = 0;

B2: “B 1Σ+
u block”: N ≥ 0, p = (−1)N , Sp = (1 + p)/2, Se = 0;

B3: “a 3Σ+
g block”: N ≥ 0, p = (−1)N , Sp = (1− p)/2, Se = 1;

B4: “b 3Σ+
u block”: N ≥ 0, p = (−1)N , Sp = (1 + p)/2, Se = 1,

which can be accessed in independent runs of our computer program using basis

functions with the appropriate quantum numbers.
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FIG. 6: Orientation chart for the electronic states of H2 below the H(1)+H(2) dissociation

threshold (see for example Herzberg [17] or Brown and Carrington [18]). The same color

(red or green) and shape (rectangle or ellipse) coding indicate those states, which can be

obtained in the same pre-Born–Oppenheimer calculation. Empty objects indicate bound

states, while filled objects refer to the fact that the corresponding rovibronic states (if

there are any) are resonances embedded in the H(1)+H(1) continuum.
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FIG. 7: Rovibrational levels of excited electronic states in pre-BO theory: The

ladder structure of the pre-Born–Oppenheimer (pre-BO) energy levels (right). The left of

the figure visualizes the rovibrational states corresponding to their respective potential

energy surfaces in the Born–Oppenheimer (BO) approximation. While in the BO picture,

the rovibrational states corresponding to the excited electronic state are bound states, they

appear as resonances in the full pre-BO treatment. [Reprinted with permission from E.

Mátyus, J. Phys. Chem. A 117, 7195 (2013). Copyright 2013 American Chemical Society.]
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FIG. 8: Part of the spectrum of the complex scaled Hamiltonian, H(θ) with θ ∈
[0.005, 0.065] for the X 1Σ+

g block [p = (−1)N , Sp = (1 − p)/2, Se = 0] and for the

b 3Σ+
u block [p = (−1)N , Sp = (1 + p)/2, Se = 1] with N = 0, 1, and 2 total spatial angular

momentum quantum numbers. The black triangles indicate the threshold energy of the dis-

sociation continua corresponding to H(1)+H(1), H(1)+H(2), and H(1)+H(3). [Reprinted

with permission from E. Mátyus, J. Phys. Chem. A 117, 7195 (2013). Copyright 2013

American Chemical Society.]

49



TABLE VI: Identified resonance-state energies and widths, in Eh, of H2 in the b 3Σ+
u block

[p = (−1)N , Sp = (1 + p)/2, Se = 1] for N = 0, 1, and 2.

(N, p, Sp, Se)
a Re(E) b Γ/2 b ERef,exp

c ERef,theo
d Assignment e

(0,+1, 1, 1) [−0.999 450 1] f [−0.999 455 7] H(1)+H(1) continuum
[...]

(0,+1, 1, 1) −0.677 947 1 1 · 10−7 −0.677 946 1 −0.677 942 7 [19] e 3Σ+
u , R = 0, v = 0

(0,+1, 1, 1) −0.668 549 3 9 · 10−7 −0.668 547 8 −0.668 541 0 [19] e 3Σ+
u , R = 0, v = 1

(1,−1, 0, 1) [−0.999 445 8] f [−0.999 455 7] H(1)+H(1) continuum
[...]

(1,−1, 0, 1) −0.731 434 0 5 · 10−7 −0.731 438 8 −0.731 469 1 [20] c 3Π+
u , R = 0, v = 0

(1,−1, 0, 1) −0.720 717 5 2 · 10−7 −0.720 782 6 c 3Π+
u , R = 0, v = 1

[...]
(1,−1, 0, 1) −0.677 705 5 2 · 10−7 −0.677 704 1 −0.677 698 2 [19] e 3Σ+

u , R = 1, v = 0
(1,−1, 0, 1) −0.668 319 5 1 · 10−6 −0.668 319 7 −0.668 309 8 [19] e 3Σ+

u , R = 1, v = 1

(2,+1, 1, 1) [−0.999 439 7] f [−0.999 455 7] H(1)+H(1) continuum
[...]

(2,+1, 1, 1) −0.730 888 2 9 · 10−7 −0.730 888 7 c 3Π+
u , R = 1, v = 0

(2,+1, 1, 1) −0.720 219 0 < 2 · 10−7 −0.720 258 0 c 3Π+
u , R = 1, v = 1

[...]
(2,+1, 1, 1) −0.677 222 9 2 · 10−8 −0.677 222 2 e 3Σ+

u , R = 2, v = 0
(2,+1, 1, 1) −0.667 863 2 7 · 10−7 −0.667 865 3 e 3Σ+

u , R = 2, v = 1

a N : total spatial angular momentum quantum number; p : parity, p = (−1)N ; Sp

and Se: total spin quantum numbers for the protons and electrons, respectively.
b Re(E) and Γ: calculated resonance energy and width with Γ/2 = −Im(E). The
largest basis set contained 15 500 basis functions for each set of quantum numbers.
The proton-electron ratio was mp/me = 1 836.152 672 47 [16].
c ERef,exp experimental reference value, in Eh, derived as Eexp = E0 + Texp with the
ground-state energy (X 1Σ+

g , N = 0, v = 0) E0 = −1.164 025 030 Eh. All Texp
values were obtained by correcting the experimental term values of Dieke [21], with
−0.000 681 7 Eh = −149.63 cm−1 (1 Eh = 219 474.631 4 cm−1), since all triplet
term values were too high as it was also noted, for example, in Ref. [19].
d ERef,theo: theoretical reference energy, in Eh [19, 20]. The non-relativistic energy
of two ground-state hydrogen atoms is given in square brackets.
e Born–Oppenheimer electronic- and vibrational-state labels. The (approximate)
rotational angular momentum quantum number, R, is also given.
f The lowest-energy eigenvalue of the real Hamiltonian obtained with the largest
parameter set and with the given quantum numbers.

• Also note the automated inclusion of the coupling of the orbital and rotational

angular momenta
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X. MOLECULAR STRUCTURE IN QUANTUM MECHANICS

Equilibrium geometry (IUPAC, Gold Book, last accessed: August 2017):

“Molecular geometry that corresponds to the true minimum on the respective po-

tential energy surface. While information relating to the equilibrium geometry is

provided by calculations within the adiabatic approximation (minimization of the

total energy with respect to any independent geometrical parameter), various ex-

periments yield some effective geometries for the molecule which are averaged over

molecular vibrations.”

• What is the definition of molecular structure without the BO ap-

proximation?

• Idea: let’s look at the wave function!

A. Probabilistic interpretation of the wave function

Claverie and Diner suggested in 1980 that appropriate marginal probability den-

sity functions calculated from the full wave function could be used to identify molec-

ular structural features in the full electron-nuclear wave function [22]. In other words,

structural parameters do not have sharp, dispersionless values, but they are charac-

terized by some probability density function.

In what follows, one- and two-particle probability density functions are introduced

which will be used for the structural analysis. The probability density of selected

particles measured from a “center point” P fixed to the body is

D
(n)
P,a1a2...an

(R1,R2, . . . ,Rn)

= 〈Ψ|δ(ra1 − rP −R1)δ(ra2 − rP −R2) . . . δ(ran − rP −Rn)|Ψ〉 (129)

with Ri ∈ R3 and the three-dimensional Dirac delta distribution, δ(r). The center

point P can be the center of mass (denoted by “0”) or another particle. For a single
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particle, this density function is

D
(1)
P,a(R1) = 〈Ψ|δ(ra − rP −R1)|Ψ〉 . (130)

For P = 0, D
(1)
0,a is the spatial density of particle a around the center of mass (“0”),

while for P = b, D
(1)
b,a measures the probability density of the displacement vector

connecting a and b.

Due to the overall space rotation-inversion symmetry, D
(1)
P,a(R1) is “round” for

N = 0, p = +1 and the corresponding radial function is:

ρP,a(R) = D
(1)
P,a(R1) (131)

with R1 = (0, 0, R) and R ∈ R+
0 . We normalize the density functions to one (so,

they measure the fraction of particles which can be found in an infinitesimally small

interval dR around R):

4π

∫ ∞

0

dR R2 ρP,a(R) = 1. (132)

The probability density function for the included angle a–P–b is obtained by in-

tegrating out the radii in the two-particle density measured from a center point

P

ΓP,ab(α) =

∫ ∞

0

dR1R
2
1

∫ ∞

0

dR2R
2
2 D

(2)
P,ab(R1,R2), (133)

with

D
(2)
P,ab(R1,R2) = 〈Ψ|δ(ra − rP −R1)δ(rb − rP −R2)|Ψ〉 . (134)

The center point, P , can be the center of mass (P = 0) or another particle (P = c).

Similarly to D
(1)
P,a(R1), D

(2)
P,ab(R1,R2) is also spherically symmetric for wave functions

with N = 0, p = +1, and its numerical value depends only on the lengths R1 = |R1|,
R2 = |R2|, and the α included angle of the vectorsR1 andR2 (for non-zero lengths).
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vs.

FIG. 9: In the Born–Oppenheimer approximation “[w]e discuss the very same type of

differential equation in an entirely different way”—Hans Primas, Ref. [23].

We normalize the angle density according to

8π2

∫ π

0

dα sinα ΓP,ab(α) = 1. (135)

1. Numerical demonstration of the H− −→ H+
2 transition

In this section, we study the family of {a±, a±, b∓}-type three-particle Coulomb

interacting systems with two identical particles and a third one (Figure 9). This

family of systems is described by the Hamiltonian

Ĥ(ma,mb, r) = − 1

2ma

∆r1 −
1

2ma

∆r2 −
1

2mb

∆r3 +
1

|r1 − r2|
− 1

|r1 − r3|
− 1

|r2 − r3|
,

(136)

for various masses and unit charges. Note that the Hamiltonian is invariant to the

inversion of the electric charges. Furthermore, rescaling the masses by a factor η is

equivalent to scaling the energy and shrinking the length by the factor η

Ĥ(ηma, ηmb, r) = ηĤ(ma,mb, ηr), ∀η ∈ R \ {0}. (137)

Thereby, it is sufficient to consider only the ma/mb mass ratio to obtain qualitatively

different solutions. It is also known that the Hamiltonian in Eq. (136) has at least

one bound state for all mass ratios.

To numerically study the H− → H+
2 transition, the ground-state wave functions

were computed for several mass ratio values using the variational procedure described

earlier. Figure 10 shows the transition of the particle density, D
(1)
0a , upon the change

of ma/mb. It is interesting to note that the emergence of the particle shell is solely
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FIG. 10: Transition of the ground-state particle density, D
(1)
0a , by increasing the ma/mb

mass ratio in {a±, a±, b∓}-type systems [24]. The center (0) of each plot is the center of

mass.

induced by the increase of ma/mb [24, 25], while the symmetry-properties of the

systems remain unchanged. All systems are “round” in their ground state withN = 0

and p = +1. In Ref. [24] the transition point was numerically estimated to be between

0.4 and 0.8, which also suggests that the positronium anion, Ps−, is slightly molecule-

like. In the figure the H+
2 molecular ion is seen as a shell, and thus, we may wonder

whether it is possible to identify the relative position of the protons within the shell.

For this purpose the angular density function, Γ0,pp′ , was calculated in Ref. [25],

which demonstrated that the protons are found at around the antipodal points of

the shell (remember that the center of each plot is the center of mass). Kinsey and

Fröman [26] and later Woolley [27] have anticipated similar results by considering

the “mass polarization” term in the translationally invariant Hamiltonian arising

due to the separation of the center of mass. Furthermore, the proton shell has some

finite width, which can be interpreted as the zero-point vibration in the BO picture.

Recent work [28–30] has elaborated more on the transition properties and vibrational

dynamics of this family of three-particle systems and determined the mass ratio

where the transition takes place more accurately.

2. Numerical example for a triangular molecule

Larger molecules are also “round” in their eigenstates with zero total angular

momentum and positive parity (N = 0, p = +1), and localized particles form shells

around the molecular center of mass. In order to demonstrate a non-trivial arrange-

ment of the atomic nuclei in a molecule, the H2D
+ = {p+, p+, d+, e−, e−} molecular

ion was studied in Ref. [25]. Interestingly, the qualitative features of the computed
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ρ0,e ρ0,p ρ0,d ρd,p

Γ0,ee′ Γ0,pp′ Γ0,dp Γd,pp′

FIG. 11: Probability density functions computed for H2D
+ = {e−, e−, p+,p+,d+}.

density functions (see Figure 11) converged very fast, small basis sets and a loose

parameterization was sufficient to observe converged structural features, whereas the

energies were far from spectroscopic accuracy.

Figure 11 summarizes the particle-density functions which highlight characteristic

structural features of the system. First, we can observe the delocalized electron cloud

(ρ0,e), the proton shell (ρ0,p), and the deuteron shell (ρ0,d) around the center of mass.

The deuteron shell is more peaked and more localized in comparison with the proton

shell. (Remember that these plots show the spherically symmetric density along a

ray and all density functions are normalized to one.)

Next, let’s look at the probability density functions for the included angle, Γ0,ab, of

two particles measured from the molecular center of mass (“0”). The dashed line in

the plots shows the angular density corresponding to a hypothetical system in which

the two particles (a and b) are independent. It is interesting to note that for the two

electrons Γ0,ee’ shows very small deviation from the (uncorrelated system’s) dashed

line. At the same time, we see a pronounced deviation from the dashed line for the

nuclei, Γ0,pp’ and Γ0,pd. These numerical observations are in line with Claverie and

Diner’s suggestion based on theoretical considerations [22] that molecular structure

could be seen in an fully quantum-mechanical description as correlation effects for

the nuclei.
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As to the included angle of the two protons and the deuteron, the Γd,pp’ probability

density function has a maximum at around 60 degrees, which indicates the triangular

arrangement of the nuclei. Due to the almost negligible amplitude of Γd,pp’ at around

180 degrees the linear arrangement of the three nuclei (in the ground state) can be

excluded. Thus, the pre-BO numerical study is with the molecular (equilibrium)

structure known from BO electronic-structure computations.

B. Classical structure from quantum mechanics

Relying on the probabilistic interpretation of quantum mechanics the structure of

H+
2 was visualized as a proton shell (Figure 10) with the protons found at around the

antipodal points, and H2D
+ as a proton shell and a deuteron shell within which the

relative arrangement of the three nuclei is dominated by a triangle (Figure 11). This

analysis has demonstrated that elements of molecular structure can be recognized

in the appropriate marginal probability densities calculated from the full electron-

nuclear wave function. At the same time, a chemist would rather think about H+
2

as a (classical) rotating dumbbell (Figure 12) and H2D
+ as a (nearly) equilateral

triangle. Although elements can be recognized in the probability density functions,

the link to the classical structure which chemists have used for more than a century

to understand and design new reaction pathways for new materials, is not obvious

[23, 27, 31–34]. In order to recover the the classical molecular structure from a fully

quantum mechanical treatment, it is necessary to obtain for a molecule

(a) the shape;

(b) the handedness: chiral molecules are found exclusively in their left- or right-

handed version or a classical mixture (called racemic mixture) of these mirror

images but “never” in their superposition;

(c) the individual labelling of the atomic nuclei (distinguishability).

Although it is possible to write down appropriate linear combinations (wave packets)

of eigenstates of the full Hamiltonian, which satisfy these requirements at certain

moments, the (a)–(c) properties are well-defined “molecular constants”.
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vs.

FIG. 12: Superposition vs. a rotating dumbbell

A very successful direction for the resolution of this puzzle is the description of the

molecule as an open quantum system being in interaction with an environment [35,

36]. According to decoherence theory pointer states are selected by the continuous

monitoring of the environment. As a result, the system’s reduced density matrix

(after tracing out the environmental degrees of freedom from the world’s density

matrix) written in this pointer basis evolves in time so that its off-diagonal elements

decay exponentially with some decoherence time characteristic to the underlying

microscopic interaction process with the environment (radiation or matter). This

decay of the off-diagonal elements leads to the suppression of the interference terms

between different pointer states, and results in a (reduced) density matrix the form

of which corresponds to that of mixed states. Hence, this result can be interpreted

as the emergence of the classical features in a quantum mechanical treatment. All in

all, decoherence theory allows us to identify pointer states, which are selected and

remain stable as a result of the molecule’s interaction with its environment.

It is interesting to note that important molecular properties (shape, handedness,

atomic labels) break the fundamental symmetries of an isolated quantum system:

the rotational and inversion symmetry, as well as the indistinguishability of identical

particles. It remains a task to explore on a detailed microscopic level how and why

these broken-symmetry states become pointer states of a molecular system.

a. Shape Following the pioneering studies which have identified pointer states

and confirmed their stability upon translational localization [37–39] Ref. [40] pro-

vides a detailed account of the rotational decoherence of mesoscopic objects induced

by a photon-gas environment or massive particles in thermal equilibrium. The qual-

itative conclusions are similar for the two different environments, however there are
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differences in the estimated decoherence time and its temperature dependence differ

for the two environments. Orientational localization of the mesoscopic ellipsoid takes

place only if there are at least two directions for which the electric polarizabilities

are different, and coherence is suppressed exponentially with the angular distance

between two orientations.

b. Handedness As to the chirality of molecules, the superselection phenomenon

has been demonstrated in Ref. [41] by using a master equation [42] which describes

the incoherent dynamics of the molecular state in the presence of the scattering

of a lighter, thermalized background gas. Experimental conditions are predicted

under which the tunneling dynamics is suppressed between the left and right-handed

configurations of D2S2.

c. Individual labelling of the atomic nuclei Concerning the distinguishability of

atomic nuclei, it remains a challenge to work out the detailed theoretical equations

and to estimate the experimental conditions under which the individual labelling of

quantum mechanically identical atomic nuclei (e.g., protons) emerges, and gives rise

to the concept of chemical isomerism.

58



Appendix

pdg.lbl.gov/2002/clebrpp.pdf (last accessed: 28 August 2017)

35. Clebsch-Gordan coefficients 1
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Figure 35.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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